

2× Taq PCR Aurora Mix

REF: EG25104-M/L

储运条件

-20°C

产品组成

组分	规格 M	规格 L
2× Taq PCR Aurora Mix	5×1 ml	100×1 ml

产品简介

Taq PCR Aurora Mix 的浓度为 $2\times$,使用方便快捷,能减少 PCR 操作过程中的污染,使用时只需取适量 $2\times$ Taq PCR Aurora Mix (+Dye),加入模板和引物,并加入 ddH_2O 补足体积,使反应体系浓度为 $1\times$,即可进行 PCR 反应。PCR 产物 3' 端带突出 A 碱基,纯化后可直接用于 T/A 克隆。

该 Mix 中含有 Taq DNA 聚合酶和一种含有 $3' \rightarrow 5'$ 外切活性的蛋白,能够高效扩增 ≤ 7 kb 的 DNA 片段,扩增产量高,配合优化后的反应缓冲液,可实现对不同 GC 含量(30%~70%)的高效扩增。此外,相较于 WT-Taq,Taq PCR Aurora Mix 延伸速度提高了 $2\sim 4$ 倍,可有效缩短反应时间。

本 PCR Mix 中包含两种染料,PCR产物无需添加 Loading Buffer 可直接点样电泳,且电泳过程中会出现蓝色和红色两个指示条带。该染料不影响 PCR 扩增效率,但对于需要对 PCR产物进行吸光度、荧光等光学分析的实验,建议在分析前对 PCR产物进行纯化。

质量控制

核酸内切酶活性检测

将 25 μ l 2× Taq PCR Aurora Mix 与 200 ng 超螺旋质粒 DNA 配制成 50 μ l 反应体系,在 37°C下,共同温育 4 h 后,使用琼脂糖凝胶电泳检测,少于 10% 的质粒 DNA 转变成缺刻或线性状态。

非特异性核酸酶活性检测

将 25 μ l 2× Taq PCR Aurora Mix 与 15 ng 双链 DNA 片段配制成 50 μ l 反应体系,在 37°C下温育 16 h,使用琼脂糖凝胶电泳检测双链 DNA 底物无变化。

使用方法

1. 常规 PCR 反应体系(冰上操作)

	使用量	终浓度
2× Taq PCR Aurora Mix ^a	25 µl	1×
正向引物 (10 µM)⁵	1~2 µl	0.2~0.4 μM
反向引物 (10 µM) ^b	1~2 µl	0.2~0.4 μM
模板 DNA ^c	xμl	
ddH_2O	To 50 µI	

- a. 需融解完全后使用, 防止离子浓度不均匀;
- b. 引物推荐终浓度为 $0.2 \sim 0.4~\mu M$,效果不佳时可以在 $0.1 \sim 1~\mu M$ 浓度范围内进行调整;
- c. 不同模板最佳反应浓度有所不同,以 $50~\mu$ I 体系为例:模板为基因组 DNA 时,一般推荐的使用量为 10~200~ng;当模板为质粒或病毒 DNA 时,一般推荐的使用量为 10~pg~5~ng。模板量过多时容易造成非特异性扩增。

2. 三步法 PCR 反应程序

步骤	温度	时间	_
预变性 ^d	95 °C	3~5 min	_
变性	95 °C	30 s	•
退火°	55~65 °C	30 s	30~35 Cycles
延伸 ^f	72 °C	15~30 s/kb	
终延伸	72 °C	5 min	

3. 二步法 PCR 反应程序

步骤	温度	时间	_
预变性 d	95 °C	3~5 min	_
变性	95 °C	30 s	4 20 25 Curles
退火和延伸°	60~65°C	30 s/kb	30~35 Cycles
终延伸	72 °C	5 min	

- d. 菌落 PCR 时预变性 10 min,可充分破壁细胞,大肠杆菌或酵母菌均可高效 tride
- e. 退火温度请根据引物 Tm 值设置。如果需要,推荐通过建立温度梯度寻找引物与模板结合的最适温度。此外,退火温度直接决定扩增特异性,如发现扩增特异性差,可适当提高退火温度。
- f. 目的片段长度 < 3~kb,延伸时间可缩短至 15~s/kb;目的片段长度 > 3~kb,延伸时间建议 30~s/kb。若要达到最佳扩增效果或较高产量,推荐统一使用 30~s/kb 速度延伸。

注意事项

一、引物设计

- 1. 引物 3' 端最后一个碱基最好为 G 或者 C。
- 2. 引物 3' 端最后 8 个碱基应避免出现连续错配,同时也避免出现发夹结构。
- 3. 正向引物和反向引物的 Tm 值相差不超过 1℃为佳,Tm 值调整至 55 ~ 65℃为佳(引物 Tm 值推荐使用 Primer Premier 5 进行计算)。
- 4. 引物额外附加序列,即与模板非配对序列,不应参与引物 Tm 值计算; 引物的 GC 含量控制在 40%~60% 之间。
- 5. 引物 A、G、C、T 整体分布要尽量均匀,避免使用 GC 或者 AT 含量高的区域。
- 6. 引物内部或者两条引物之间避免有 5 个碱基以上的互补序列,两条引物的 3'端避免有 3 个碱基以上的互补序列。
- 7. 引物设计完毕请使用 NCBI BLAST 功能检索引物特异性,以避免产生非特异性扩增。

二、产物电泳与染色

建议使用泡染法进行电泳后染色,胶染法会导致红色指示条带发生弥散,不利于条带指示,对蓝色指示条带无影响。蓝色条带在 1% TAE 缓冲液中迁移速率约等于 1500 bp,红色条带在 1% TAE 缓冲液中迁移速率约等于 100 bp。

常见问题

问题描述	可能原因	解决办法	
无产物或产物量少	引物	优化引物设计	
	退火温度	设置退火温度梯度,找到合适的退火温度	
	引物浓度	适当提高引物浓度	
	延伸时间	适当增加延伸时间至 30 s/kb	
	循环数	增加循环数至 35~40 个循环	
	模板纯度	使用高纯度模板	
	模板使用量	粗提样品可能需要减少使用量; 其他样品使用量参照反应体系推荐量并适量增加	
	引物	优化引物设计	
	退火温度	尝试提高退火温度,可间隔 2℃设置温度至 65℃	
	引物浓度	降低引物浓度至终浓度为 0.2 μM	
有杂带或弥散条带	延伸时间	有大于目标条带的杂带时可减少延伸时间	
	循环数	减少循环数至 25~30 个循环	
	模板纯度	使用高纯度模板	
	模板使用量	使用量参照反应体系推荐量调整	

